If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-47x+45=0
a = 2; b = -47; c = +45;
Δ = b2-4ac
Δ = -472-4·2·45
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-47)-43}{2*2}=\frac{4}{4} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-47)+43}{2*2}=\frac{90}{4} =22+1/2 $
| 11c-3=9+5c | | -4(t-1)+9t=3t-1 | | 10=-2(8+v) | | 3-11c=9+5c | | 6(x^2)-6x-16=0 | | (8x-2)(3×+4)=(4×+3)(6×-1) | | 5x+8−3x=−10 | | 4x^2-5x=3=0 | | -x^2+2=2x^2-25 | | 0.5(6x+14)=2(5x-7) | | 7x-2=4x+13= | | 2y–3=4y+6 | | |x-1|=-4 | | -3(t-2)+9t=8t-9 | | (3x+20)+(4x-30)=180 | | .50k+6=4k-8 | | 3(x-41)=x+7 | | -x2+2=2x2-25 | | a^2+12a-28=0 | | p-08÷1/2=-3 | | 3/4(8t^2-4t+24t-12)=0 | | 6x+12=6(x+2 | | 5-y-y=-12 | | 3/7x^2-x-1/7=0 | | 2^(2x+4)-9(2^x)=0 | | 2h+3=4h+2 | | 15p–15p+p+3p–4=16 | | 6x2+4x-5=0 | | -7y(y-12)=-147 | | 5n=29n | | 2^2x+4-9(2^x)=0 | | y=0.15+17.61 |